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Theoretical Flow Instability of the Karman Boundary Layer

Young-Kyu Hwang*, Yun-Yong Lee
School of Mechanical Engineering, Sungkyunkwan University

The hydrodynamic stability of the Karman boundary-layer flow due to a rotating disk has
been numerically investigated for moving disturbance waves. The disturbed flow over a rotating
disk can lead to transition at much lower Re than that of the well-known Type I instability
mode. This early transition is due to the excitation of the Type IT instability mode of moving
disturbances. Presented are the neutral stability results concerning the two instability modes by
solving new linear stability equations reformulated not only by considering whole convective
terms but by correcting some errors in the previous stability equations. The reformulated
stability equations are slightly different with the previous ones. However, the present neutral
stability results are considerably different with the previously known ones. It is found that the
flow is always stable for a disturbance whose dimensionless wave number k is greater than 0.75.

Key Words: Karman Boundary-Layer Flow, Hydrodynamic Stability. Rotating Disk, Moving
Disturbance Wave

1. Introduction

The hydrodynamic stability over a rotating
system has been investigated by many scientists to
understand the fundamental mechanism of 3
-dimensional boundary-layer transition process
(Wilkinson and Malik, 1985; Faller, 1991; Ko­
hama and Suda, 1993; Lingwood, 1997). Various
types of flows belong to this category. As an
example. the stability and transition of rotating
flows have been related to weather, typhoons,
tornadoes, and similar phenomena over swept
-back airfoils such as an impeller, transition
process of ICBM's cone, and head levitation
process over a HDD.

The rotation of flow system dramatically affects
the stability characteristics of flows at various
physical situations. After the famous exact solu­
tion for the Karman boundary-layer flow were
obtained by Sparrow and Gregg (1960), the
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progress in the stability theory and experiment for
rotating flows has been explosive in the past
decades. The stability analysis of Lilly (1966) for
the Ekman layer flow revealed that the inclusion
of Coriolis term in the stability analysis for sta­
tionary disturbance wave yields the significant
increment of the critical Reynolds number, ReC,1

(i.e., Type I instability). Also, he found that
another mode of instability (i.e., Type IT instabil­
ity) for moving disturbance waves, caused by the
Coriolis force, exists at much lower value of
critical Reynolds number ReC.2, compared to
those of stationary disturbance waves.

Some examples of the stationary disturbances
concerning the Type I instability are described
as below.

The Karman boundary-layer transition on a
rotating disk was first studied by Smith (1947)
using the hot-wire technique. He observed that
some sinusoidal disturbances appeared in the disk
boundary-layer at sufficiently large Reynolds
numbers. Approximately 32 oscillations were
observed within a disk rotation period and his
numerical analysis indicated that the disturbances
propagated at an angle of about 14° relative to the
outward drawn radius (where the direction of
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disk rotation defines positive angle). Later,
Gregory et af. (1955) observed 28-31 spiraling
outward vortices over a rotating disk at an angle
of about 14° by using the china-clay technique for
flow visualization. These vortices, which appear­
ed stationary relative to a disk, were first observed
at the local Reynolds number Re::,:430, transition
to turbulence occurred at Re> 530 (see, also,
Gregory and Walker, 1960).

The stationary disturbance wave established in
a rotating disk was subsequently studied by lots
of investigators mentioned as follow. Kobayashi
et af. (1980) performed a theoretical analysis in
which some of the effects of Coriolis and stream­
line curvature were considered. They calculated
the value of Ree,l as 261 and observed that the
number of spiral vortices was 31 or 32 at the
position of Re::,:297 and that the gradient of
vortex axis decreased from 14° to 7° as Re was
increased. Malik et af. (1981) numerically
predicted that the critical Reynolds number Ree,h
for establishment of stationary disturbance wave
is 287 and these vortices spiral outward at an
angle of about ce,l= 11.2" (Note that the recal­
culated values of Malik (1986) are Res: =285.36
and €e.l=IL4°), They observed that there were
about 21 vortices at Re::::: 294. Their calculated
the value of Ree,2 for Type nmoving disturbance

wave was about 49. Faller (1991) considered the
effects of Coriolis force and streamline curvature
in his stability analysis and obtained the neutral

stability results, e.g; Ree,l=285.3, ke,l (wave
number at Ree,l)=0.378 and ce,l (azimuth angle
at Ress) = 13.9° for Type I instability, while Ree.2

=694, ke•z=0.279, and ce,2= -19.0· for Type n
instability.

For the Karman boundary-layer flow, Faller
(1991) took sequential photographs of dye bands
which were moving outward, as seen in Fig. 1(a).
The resulting sketches of die patterns in Fig. 1(b)

illustrated the typical structures of Type ]I and
secondary instabilities.

The present study is a stability analysis of
rotating disk flow, (i.e., the Karman boundary­
layer) in which the effects of Coriolis force and
streamline curvature are included. The previously
known linear stability equations of Faller (1991)

are reformulated by correcting sign error and by
keeping whole convective terms. The reformulat­
ed stability equations are accurately solved by
using the orthogonal collocation technique. The
results yield more complete 4-dimensional neu­
tral stability curves, corresponding to the Type I
and IT instabilities, than those of previous investi­
gators. It will be seen that the flow is always
stable for a disturbance whose dimensionless

(a} P~lOCO from Faller (1991) (b) Sketch of their structured

Fig. I Type [ and secondary instability of Karman boundary layer illustrate:
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Fig. 2 Numerical solution of base flow equations
for Ro= -1, Co=2

solved on the interval [0, 7]",] with 7]",=40-120.
Namely, the base flow solution was crudely
obtained first by using a finite difference method
(FDM). Then, a computing code COLNEW
(Bader and Ascher, 1985) which was designed to
solve two-point boundary-value problems accu­
rately, was utilized to find more accurate numeri­
cal solution. At that time, the crude solution was
used to provide the initial guess for COLNEW.
The resulting solutions are stored as B-spline
coefficients in order to be called during the stabil­
ity computation. Nondimensional velocity distri­
bution for the base flow is shown in Fig. 2. Note
that the radial base flow direction is negative.

2. The Governing Equations

z=DZ , D=(~)t, LlW=-WD (I)
QJD

Assuming an axi-symrnetrical similarity solu­
tion to the base flow with the dimensionless
velocities of x, y, z components F (a) , G (z), and
H (a) defined by

U=LlwrF, V=LlwrG, W=LlwDH (2)

2.1 Base flow equation
The steady, laminar, axi-symmetric flow of an

incompressible viscous liquid, which occupies the
semi-infinite region on one side of a rotating
infinite disk, was first discussed by von Karman
(1921). The similarity equations for the steady
laminar base flow of Karman boundary-layer
(with the rotation system in Fig. 3) are well
known; for example, Faller (1991). To formulate
them the following quantities were used: z
(dimensionless axial coordinate), D (a character­
istic boundary-layer depth), and dca (a relative
angular speed of fluid WF with respect to the disk

WD)' where

wave number k is greater than 0.75 ti:e., if WD=
0.325 rps, and whose corresponding physical
wave number k >4.27cm- I ) . It will also be
shown that the azimuth angle of disturbance wave
which spiral outward tend to be decreased from
13.20 to lower angle as the local Reynolds number

is further increased from Rec,l'

The continuity equation is

The boundary-value problem (3a, b)-(5) was

and scaling lengths by D and time by rotational
disk speed WD-I, the radial and tangential base
flow equations are

2.2 The linear stability equations
The instability problem of the Karman bound­

ary-layer has long been a prototype for studies of
instabilities in general 3-dimensional boundary­
layers. Gregory et al. (1955) discussed the appli­
cation of the swept-back airfoils, and developed a
partial theory showing that those waves were
associated with an inflection point in the cross­
vortex base flow.

The linear stability equations for the Karman
boundary-layer can be derived and reduced to the
similarity form as was done by Faller et al.
(1989) (see, also, Faller, 1991). We follow the
way of Faller to reformulate the stability equa-

(5)

(4)

F(O) =G(O) =H(O) =0,
F(co) =0, G(co)=l

The boundary conditions are

F 2+ HFz - (G2-1) +2(G-l) + Fzz=O,
(3a)

2FG+HGz-2F+Gzz=0 (3b)



Theoretical Flow Instability of the Karman Boundary Layer 361

( 10)

tions as below. But, our stability equations are
slightly different compared to those of Faller.
Namely, the present stability equations have been
reformulated not only by correcting some errors
but by keeping convective terms, instead of neg­
lecting the perturbated terms with respect to r.
Both the errors and neglected terms are appeared
in the Eq. (30) of Faller et al. (1989).

Nondimensional perturbation equations can be
formulated by subtracting base flow equations
from the r , 8, z components of motion in a
cylindrical coordinate system rotating with the
angular speed OJD, by omitting products of fluctu­
ations, and, finally, by introducing the transfor­
mations

(ii, v, w) -+ i1OJD(u, v, w),
(r, z) -> D(r, z), f -> t/OJD, p-> i1OJD2p

(6)

where the value of - means dimensional vari­
able. The non-dimensional perturbation equa­
tions are then

ut+Re(Fur+ C;o +wFz)+Ro(Huz+Fu

-2Cv) -Cov= -Pr+V2U--#.r-~ (7a)r r

u, + Re (Fvr + C~o + wCz ) + Ro(Hvz+ Fv

+2Cu) +CoU=_k+V2V-~+4 (7b)
r r r

Wt +Re (Fwr+ CWO) +Ro(Hwz+ wHz)r

=-~+~w (~

(ru) r +~+ wz=O (7d)
r r

where Re is defined as Re=L1OJr D/II, Ro=-l
and Co=2.

The radial and tangential components of per­
turbation vorticity equations are denoted as t; and

TJ

t;t +Re (Ft;r+~- F,o, + Csu, - wGz,z)

+Ro(Ht;z+Hzt;- Fzv- Fvz- 2Gzu -ac«,

+ Fwo +G ) C _'<'72e VZ 2uoz-r- zU - OUz- v "-7----yr
(8a)

TIt + Re (FTJr+~- Fzvo + Gzuo + wF. )'/ r r r z,z

+ Ro(HzTJ+ HTJz+ Fzu+Fuz- 2Gzv-zco,
-Fwr- Cwo - Fsu-r CWO) - Covz=V2TJ

r r

uz 2v~ (8b)-7----:yr'

To adopt a local rectangular coordinate system
centered at some fixed value of Re let dr -> dx
and rd8 -> dy. The viscous terms 1/rand 1/r 2

have been omitted because I/r=-l/Re. The
rectangularized horizontal component of vorticity
equations derived from Eqs. (8a, b), are then

t;t+Re (Ft;x+ Gt;y - Fzux+Gsu; - Gzzw)
+ Ro(Ht;z+ Hzt;- Fzv- Fvz- 2Czu
-2Cuz+ Fwy+ Gsu) - Couz=V2t; (9a)

TJt+ Re(FTJx+ GTJy- Fzvy+GzUy+ Fzzw)
+ Ro(HzTJ +HTJz+ Fzu +Fuz- 2Gzv
-2Cvz- Fwx- GWy- Fsu +GWy)
- Covz=V 2TJ (9b)

The two pairs of Eqs. (7a, b) and (9a, b) are
now rotated through an angle B=e+ ;r/2 as
illustrated in Fig. 3, where e is the angle of the
new x axis with respect to the tangential direc­
tion. The instabilities are assumed to be 2-dimen­
sional vortices independent of new x-direction,

so in the rotated equations a/ax =0.
The stream function for the flow in the new (y,

z) -plane is defined by

w=.2.P.... v- _.2.P.... t;=V2¢ay' - dZ'

where - is deleted for convenience.
The perturbation velocity u and stream func­

tion ¢ may be assumed as

x

y~.......-4--2-__

/

Fig. 3 Rotation system
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(lIb)

u (y, z, t) = U(z)exp[i(}?"y- ,Bt)],
¢(y, z. t)=I1>(z)exp[i(ky-,BO] (lla)

The dimensional wave number k and wave
frequency ,B are nondimensionalized as

k=kD,

/3=1-
WD

where the ratio /3/k is referred to the wave veloc­
ity Cpo

The reoriented equations with expression of
Eqs. (10) - (11) are

U" - RoHU'+ [i/3+Re(FC +GS) ik
- (Ro F+ J(l)] U - (2Ro G+ Co)11>'
- Reik( - F'S+ G'C) 11>=0 (l2a)

11>"" - RoHI1>'" + [i/3+Re (FC +GS) ik
- (RoH' +RoF+2k2

) ] 11>" - Ro[F' - Hk 2

- C(F'C+ G'S)] 11>' - [i/3k2+ Re(FC
+ GS) ik3+ Re(F"C+G"S) ik+ RoH'k2

+Rok2S (FS-GC) +Ro k2C(GC-FS)

+ k4
] 11> + (2Ro G+ Co) U' - Ro[S (F' C

+G'S) -2G'] U=O (I2b)

where C=cos c, S=sin c. The corrected sign
term is (GC ~ FS) and the whole convective

terms Ro(F'C+G'S) 11>', RoS(F'C+G'S) U
and Rok2S (FS - GC) are included.

In order to specify the problem completely,
boundary conditions are applied to the eigenfunc­
tion (U(lJ), 11> (lJ»· Evidently, the velocity dis­
turbances quantities u, v and w must be zero at
the rotating disk surface and at a large distance
out (lJ ---> co). Therefore, the nondimensional
boundary conditions are:

U (0) = 11> (0) = 11>' (0) =0,
U'(co) ~ 11> (co) = 11>"(co) =0. (13)

The reformulated stability Eqs. (l2a, b) with
boundary conditions (13) are complex-valued,
6th-order, linear system of homogeneous differen­
tial equations.

2.3 Numerical method
The boundary value problem (l2a, b) and (l3)

can be solved by using a technique of simple

shooting from lJ = lJ"" where it is the asymptotic
solution valid as lJ ---> co, to lJ =0, and one seeks
to satisfy the conditions in (13) that apply at lJ =

o (Hwang, 1996). Also, this problem can be
solved by using the finite difference method
adopted the Adams-Bashforth time-step, centered
difference in z as did Faller (1991). To reduce the
error propagation and to avoid the inaccuracies
in both methods, the orthogonal collocation
method is employed to solve the problem. Thus,
our results were obtained primarily by using a
two-point boundary value problem code COL­
NEW that was based upon the adaptive orth­
ogonal collocation method using B-spline. For

the approximation of lJ'" in Eq. (13), lJ",=40
-120 was chosen, that was the same value for the
base flow.

To generate the families of solutions, an ad hoc
scheme was used as described below. Since there
is no simple way to normalize the solutions of the
eigenvalue problem (l2a, b) and (13) which has
all homogeneous boundary conditions, an alter­
native must be found to avoid the trivial solution.

The boundary conditions (13) are modified
slightly but significantly. These conditions are
expressed in the real and imaginary parts,

UR(0) = VI (0) = I1>R (0) = 11>1 (0) =0,

111>;;' (0) 1= 111>'!' (0) 1=J,
U1I(co) = U;(co) = I1>R (co) = 11>1 (co)

= 11>;; (co) = 11>[(co) =0 (14)

with 10-3 5:: IJ I 5:: 10-1.

The computing procedure employed to use the
orthogonal collocation code COLNEW for
obtaining the neutral stability curve is quite simi­
lar to that employed in the simple shooting. For
a given value Re, one guesses a pair of
eigenvalues k and /3. One then solves the linear
stability Eqs. (12a, b) with the modified bound­
ary conditions (l4), replacing 11>' (0) =0, using
COLNEW, and iterates by adjusting the values of
k and /3 until the boundary conditions 11>11(0) =
11>[(0) =0 are satisfied with 111>11(0) 1+111>;(0) 15::
10-6.

In our calculation, the following criteria was
used to get the acceptable solution.

( ISa)

(lSb)



Theoretical Flow Instability of the Karman Boundary Layer 363

where M was maximum value of the eigenvector

components (i.e., U, U', e. o: $") on 0:::;;; 7J:::;;;

7J",,'
In addition, the error estimates given by COL-

NEW were less than 10-5•

3. Results and Discussion

Since there is one neutral stability curve corre­
sponding to each of two instability modes, two
critical Reynolds numbers are considered. These

Reynolds numbers Rec.1 and Rec.2 are the smal­
lest Reynolds numbers on the neutral stability
curve corresponding to Type I instability and
Type H instability in stability planes, respectively
(see Fig. 4). For Re c.Re.u, (i=l, 2) any small
disturbance of Type i instability mode decays.

whereas for Re >Res.; at least some disturbances
of Type i mode are amplified.

The instability that appears in the form of
stationary spiral vortices at large Reynolds num­
ber and positive azimuth angle relative to circles
on a disk is Type I. Whereas Type n as well as
Type I has a form of spiral vortices but of the
opposite angle relatively and with a lower value
of Re., and the vortices move rapidly outward.

We obtained the stability results that satisfied
the criteria for accuracy (15a, b) for several e

(the azimuth angle of disturbance wave) values in
the range -28°:::;;;e:::;;;17°. Consequently, we
obtained more complete 4-dimensional neutral
stability curves. corresponding to the Type I and
H instabilities, than the previous investigators.

The calculated stability curves in the (k, Re)-,

(fl, Re)-, and (Cp, Re)-planes are presented in
Figs. 4-7. The 4-dimensional neutral stability
curves in Fig. 4 were drawn by connecting the
most outer portions of stability curves from Figs.
5-7. The flow is unstable in the inner region of
these 4-dimensional curves.

As seen from Fig. 4, the upper part of the
neutral stability curve in the (k. Re)-plane is
expected to be bounded by the value of k=0.75

near Re = 1200. In other words. the flow is always
stable for the disturbance whose wave number. in
terms of k. is greater than 0.75. The physical wave
number corresponding to k=O.75 is k =4.27cm-1

if CtJD=0.325 rps.
From the two neutral stability curves in Fig. 4,

it can be found that the Type I and 1I instabil­
ities have distinctive stability characteristics. If we
consider Type n instability, the flow becomes
first unstable, at early stage of instability, for
some disturbances, for example, those which are
in a band of wave numbers O.0:5k:::;;;0.587 with
wave speeds 15.7:::;;; Cp:::;;;270 and with azimuth

1200

e=8.9'
Cp=29.17

1000800

£"'8.2'
Ctp21.48

600400

() Re<=352
k=O.1I7 €""-27.0'
e=-15.4' Cp=269.0

200

Type II

Re<=36.9
k=O.385
e--23.5'
Cp=15.78

0.8

0.7

0.6

0.5

k 0.4

0.3

0.2

0.1

0.0
0

Re

Fig. 4 4-dim. neutral stability curves for the Karman layer, corresponding to the Type I and II instabil­
ities. The marked data from Faller (1991) «() corresponds to Fig. I (a)
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Fig. 5 Stability curves for e> _25°, _23°, _20°,
- 15", _10°, and _5° in the (a) (k, Reh
(b) (/3, Re) - and (c) (Cp, Re) -planes

Stewartson (1980) are considerably less than the

angles -28.4°:s:£:s:-14°. Also, if we consider
Type I instability, the flow becomes first unsta­
ble for some disturbances in 0.15:S:k:s:0.747 with
-12.6:s: ci« 29.1 and with 8.2°:s: £:s:21 0. The
Type I as well as Type H instabilities have a
form of spiral vortices. The disturbances of Type
I mode, in contrast with those of Type H mode,

can be considered as almost stationary waves due
to their relatively small values of Cp.

Some disturbance of Type H mode can be
quickly amplified from the position of relatively
small Rec,2 as it travels spirally outward with
high wave speed and with the opposite angle
relative to circle on the disk in Fig. 3. The Type
H amplification data of Faller (1991) corre­

sponding to Fig. 1(a) is shown as the mark (()
in Fig. 4. The amplified disturbances of k=0.117

with £= -15.4° are detected at Re=352, which is
10 times of our Rec.2 downstreams. The above
experimental data exists in our computed unstable
region of Type H mode (see Fig. 4).

A comparison of our computed value of critical
Reynolds number Rec.! with the respective values
of previous investigators is shown in Table 1.

Also, the present numerical values of critical
parameters, corresponding to both the Type I
and H instabilities, are compared with those of
Faller (1991) and of Malik et ai. (1981) in
Table 2. The numerical results of the present
work differ considerably with those obtained by
Faller (1991). However, both results are agreed
well within resonable limits, not only considering
the terms oflinear stability equations he formulat­
ed were different with those of the present work,
but the numerical techniques he employed were
not as powerful as those available to the authors.

From the evidence provided by the hot-wire
measurements of Wilkinson and Malik (1985)

and of Kobayashi et at, (1980), it can be founded

that the value of Rec.! is in the range 290±20.
Some numerical values of the available data for
Rec.! are considerably different due to various
modeling and numerical scheme. From the well­
known, theoretical and experimental values of
Rec.l given in Table I, there is considerable
variation of the theoretical results. The theoretical
results of Brown (1959) and of Cebeci and
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are included or not in the stability analysis.

The disturbance waves, corresponding to the

Type I instability, are almost stationary, since

the absolute values of wave speed lepl are very

small near Rec,l' Namely, for e in the range 9°~

es: 15°, the value of lepl at the lower nose of a

Cp

(c)

Fig. 6 Stability curves for s=O·, 50, 10·, and IS· in
the (a) (k, Re) -, (b) (13. Re) - and (c)
(Cp. Re)-pJanes

experimentally observed data due to neglecting

the effects of Corio lis term and streamline curva­

ture. Therefore, the theoretical value of ReC.l is

significantly dependent upon whether these effects
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stability curve is considerably small (see Figs. 6
(c), 7(c) and, also, Table 3) ..Whether the distur­

bances are very slowly moving waves or station­

ary ones, they must spiral outward as does the
base flow. This indicates that the value of Cp
must be positive or almost zero for physical flows.

The present stability results show that the flow

becomes first unstable near the position of ReC.l =

270.2 for a disturbance wave of kC•1=0.389 with

cC.l=13.2°. (Note that CP is positive as c-9°,
whereas Cp is negative as e -> 15° ; see Fig. 4 and
Table 3. ) Thus, it is expected that the value of e
tends to be slightly decreased from c= 13.2°

towards 9° as Re is further increased from ReC.l'

The above prediction reasonably agrees with the

experimental data of Kobayashi et al. (1980).
Malik et al. (1981), also, observed that the

wave of stationary disturbance at Re=294 whose
azimuth angle exists in the experimental range 11°

< e«: 14° (Gregory et al., 1955, Kobayashi et al.,
1980). However, our computed critical values for

stationary disturbances are c= 11.2°, Re=271.5

and k=OAO, respectively. Evidently, our predic­
tion for the stationary instability reasonably
agrees with the previous experimental data.

Figures 8 and 9 show the eigenvector cornpo-

Table 1 Theoretical and experimental critical Reynolds number of Type I instability

Theoretical Results Experimental Results

Investigators Critical Method Investigators Critical Method

Brown (1959) 178
Temporal instability

Smith (1946) 460 Hot-wire Probe
theory

Cebeci and Spatial stability Gregory et at.
Stewartson 175.6 430 China-clay tech.

(1980)
theory (1955)

Kobayashi
261

Predictor-corrector Gregory and
367

Acoustical slotted
et at. (1980) Technique Walker (1960) disk

Malik et at.
Spectral method by

Kobayashi
287 Chebyshev 297 Hot-wire Probe

(1981)
polynomials

et at. (1980)

Malik (1986) 285.36 LV factorization
Malik et at.

294 Hot-wire Probe
(1981)

Faller (1991) 285.3
Adams- Bashforth
time stepping

Lingwood (1997) 507 Absolute instability

Orthogonal colloca-
Present 270.2 tion and multiple

shooting

Table 2 Critical values of Type I and R Instabilities

Mode Type I TypeR

Faller (1991) Present Faller (1991)
Malik et at.

Present
(1981)

Re 285.3 270.2 69.4 49 36.9

k 0.378 0.389 0.279 - 0.385

E: 13.9 13.2 -19.0 - -23.5

Cp - -4.927 - - 15.78
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Table 3 Data corresponding to the lower nose of stability curves for several $

e 0° 5° 9° 10° 11.2° 12° 13° 13.2° 14" 15°

Ren.! 369.64 297.4 276.14 273.55 271.53 270.86 270.24 270.23 270.39 272.16

CPn.! 43.37 18.77 6.08 3.30 0.0 -2.01 -4.41 -4.93 -6.81 -9.69

k 0.40 0.40 0.40 0.40 0.40 0.40 0.389 0.389 0.38 0.40

The hydrodynamic instability of the Karman
boundary-layer flow has been numerically inves­
tigated by employing the linear stability theory.
The previously known stability equations of
Faller (1991) are reformulated by correcting the
sign error and by keeping the whole convective
terms. The reformulated stability equations are
accurately solved by a two-point boundary-value
problem solving code. A computer code COL­
NEW, based on the orthogonal collocation is
used for obtaining the neutral stability curve. The
results include more complete 4-dimensional
neutral stability curves corresponding to the Type
I and n instabilities. The present stability equa­

tions are slightly different with those of Faller
(1991), but our obtained results, in particular, on
Type n instability are considerably different.
However, both results agree within reasonable
limit, considering both of characteristic shapes of
neutral stability curves are almost same.

The results show that the flow is always stable
for the disturbance whose wave number k >0.75.
The first unstable condition for Type n instabil­
ity mode is the band of wave numbers O.O=Sk~

0.587 with azimuth angles -28.4°~c~-14°.

Also, the similar condition for Type I instability
mode is 0.15~k~0.747 with 8.00~c~210. These
obtained two stability results are rather more
complete and they have relatively lower values of
critical Reynolds numbers than those of Faller
(1991). The small disturbances intend to be
decayed for Re < Re; whereas they can be selec­
tively amplified, at least, for Re >Rec-

The prediction from the present results on both
instability modes excellently agrees with the previ­
ously known experimental data. In particular, it
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Fig. 8 Plots of eigenvector components vs. 1] corre­
sponding to the Type I instability at Re=
270.2, k=0.389, $= 13.2° and 1]_=20

Fig. 9 Plots of eigenvector components vs. 1] corre­
sponding to the Type IT instability at Re=
36.9, k=0.385, $= -23.5° and 1]_=40

nents (UR' UI' (/JR' (/JR, (/JI, (/J;) which satisfy the
accuracy criteria (15. a, b), corresponding to two
noses of neutral stability curves at Rec.! and
Rec.2' In these figures, the eigenvectors are nor­
malized by the maximum value of the compo­
nents. The shapes of the components of the
eigenvectors change drastically as k· Re
increases.
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reasonably explains the previously observed sub­

tle phenomena of Type I instabilities by con­

sidering the relation between the disturbance

wave speeds and azimuth angles.
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